

High-Tech Magnetic Materials vs. Performance

Soft Magnetic Materials

- Rapid solidification is the key to Amorphous Metal Technology
- Developed and commercialized by Metglas®, Inc.
- Capacity 40,000 M tons/year with six casting lines in Conway, South Carolina
- Product available from multiple sources with Metglas®, Inc. licensing strategy

Metglas®, Inc. is the World Leader in Amorphous Metals Technology

Amorphous Metals Definition

- Metal alloys with noncrystalline atomic structures
- Product description
- Amorphous metal
- Glassy metal
- Metallic glass
- Metglas® alloy

Atomic Structure Is The Key To The Low Losses

<u>www.metglas.com</u>

Amorphous Metals Are Unique Materials

Leverage the Properties for Miniaturization of

DC Hysteresis Loops

This Picture is Worth a Thousand Words

Soft Magnetic Properties Permeability vs Coercivity

Metglas Alloys are the Superior Choice Based on the Required Optimization

Soft Magnetic Properties Saturation Induction vs Coercivity

Saturation Induction (T)

Metglas Alloys are the Superior Choice Based on the Required Optimization Performance

Magnetic Materials - Performance vs Value

h Low	•Ferrites •Sendust (small) •METGLAS Iron-based (sizes <15 mm) •METGLAS Cobalt-based (sizes <15 mm)	•MPP Ni 80% •High Flux Ni 50% •Sendust Fe 70% •METGLAS Fe 80% •METGLAS Co 75%		
High	•Silicon steel - 14/7 gauge •Iron powder •Some ferrites	•Supermendor •Si Steel (.001, .002, .004") •Ni Steel (80% Permalloy®)		

Low High Value Electronic and Electrical Applications

Low Profile Solutions for High Frequency - SMPS Design

Amorphous Metals

MICROLITE® Toroidal Cores

Higher BSAT for smaller component size	è В ѕат 1.56 Tesla
High permeability (lower I2R loss)	è m∼250 Less turns
Extended bias property (%L vs DC bias)	è Better retention
Lower magnetic losses	è 85 W/kg @ 100 kHz, 1000 Gauss
Higher thermal conductivity	è Ensures good dissipation
Higher Curie temperature	è 400°C
Excellent permeability @ high frequency	è 95% @ 1000 kHz
High continuous operating temperature	è 150°C (155°C for Class F)

Iron-Based MICROLITE Cores - Low Energy Losses

MICROLITE® Overview

MICROLITE Applications

- Output Inductor
- Input differential mode inductor
- Flyback transformer
- Power factor correction boost inductor

MICROLITE Manufacturing

- Tape wound toroidal core
- Made from an iron-based amorphous alloy
- Made from patented annealing process of the amorphous alloy

Strengths of Manufacturing Process

- 40 K tons capacity of Conway plant enables small lead-times
- Tape enables manufacture of custom cores without expensive retooling

MICROLITE® Cores Relative

to

Other Material Systems

Parameters	MICROLITE	Iron Powder	MPP	Kool Mu	Ferrite
BSAT (T)	1.56	1.0- 1.4	.75	1.1	.35
Perm	250	75	125	125	Gap dependen
Power Loss (W/kg)	<80	680	65	140	<65
% Permeability	50	50	50	50	<25
Turns	1	1.8	1.1	1.1	2.1

Assumptions

Based on 50% permeability with 50 Oe of bias

• 2500 perm ferrite was used for comparison

• Core loss comparison at 100 kHz and 1 kG BAC